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Abstract 

The elastic electron scattering factors and phases for 
eleven alkali and halide ionized atoms, Li +, Li 2+, Li at, 
Na +, K ÷, Rb ÷, Cs +, F-,  CI-, Br- and I-, have been 
calculated by the partial wave method for impact 
energies of 10, 40, 70 and 100 keV. Clementi analytic 
Hartree-Fock wavefunctions were used except for Li 2+ 
whose wavefunction was hydrogen-like, Li 3+ whose 
potential was purely Coulombic, and Rb +, Cs ÷, Br- 
and I- for which potential functions estimated from the 
X-ray scattering factors were used. The calculated 
scattering factors and phases for the ionized atoms 
have been compared with those for neutral atoms in 
International Tables for X-ray Crystallography 
[(1974). Vol. IV, pp. 176-269. Birmingham: Kynoch 
Press]. It has been found that the difference in the scat- 
tering phase between the neutral and ionized atom is 
almost constant except for small s and that the mag- 
nitude of the difference for a given valence of the 
ionized atom and a particular impact energy is nearly 
independent of the" atomic number. 

Introduction 

It is well known in the field of gas electron diffraction 
that values of molecular parameters obtained from dif- 
fraction data depend on a particular set of theoretically 
calculated scattering factors and phases used in the 
analysis (Schomaker & Glauber, 1952; Glauber & 
Schomaker, 1953). It has been pointed out that for 
analysis of electron diffraction data of ionic molecules 
(Turman, Ingrams & Hanson, 1968)and of ion-bonded 
molecules such as alkali halide vapors (Miki, 
Kakumoto, Ino, Kodera & Kakinoki, 1980), precise 
values of the scattering factor and phase are essential. 
To our best knowledge, scattering amplitudes for 
ionized atoms are available only for O-, Ne ÷ and Na ÷ 
for an impact energy of 40 keV by the partial wave 
method (Peixoto, 1969), although scattering factors for 
ions in the first Born approximation are listed in the 
latest International Tables for X-ray Crystallography 
(1974). 
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In the present study, scattering factors and phases 
were calculated for alkali and halogen ionized atoms, 
Li ÷, Li 2÷, Li 3+, Na +, K ÷, Rb +, Cs +, F-, CI-, Br- and l -  
by a partial wave method similar to Peixoto's (1969) 
for impact energies of 10, 40, 70 and 100 keV. 
Clementi analytic wavefunctions were used for Li +, 
Na +, K ÷, F -  and CI-. Since no such analytic wave- 
functions were available for Rb ÷, Cs +, Br- and I-, 
analytic potential functions for these ionized atoms 
were determined using X-ray scattering factors. 

For negatively ionized atoms F-,  CI-, Br- and I-, 
non-vanishing minimum values and their positions 
(value of s) of the scattering factor were carefully 
determined. Almost constant difference in scattering 
phase between neutral and ionized atoms was obtained 
for s > 3 /k  -~. Values of scattering phase for positively 
(negatively) ionized atoms were found to be smaller 
(larger) than those for neutral atoms. 

Theory and calculation 

The problem of elastic scattering of electrons by an 
ionized atom can be treated as the scattering by a 
modified Coulomb field (Mott & Massey, 1965). A 
scattering amplitude f ( 0 )  at scattering angle 0 is given 
as a sum of a pure Coulomb term fc(O) and a residual 
term fro(O): 

f(O) =fc(0)  + fr,,(O), (1) 
with 

~(0) = [~/2k sin 2 (0/2)] exp { - ifiln [sin 2 (0/2)] 

+ izc + 2iaoi (2) 

and 
I oo 

f~(O) = - ~  Z (2L + 1)exp(2iaL)[exp(2i6~.)- 1] 
L=O 

× PL(cos 0), (3) 

where at. is a pure Coulomb phase shift and c5 L is an 
additional phase shift due to a departure from pure 
Coulomb field. The quantities a/. and/1 are expressed as 

cr L = arg F(L + 1 + i ~  (4) 
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and 

m Z '  
f l -  - - e  z, (5) 

h 2 k 

where Z '  is the valence of the ionized atom, m the 
reduced mass of the projectile electron and the ion, and 
k the wave number of the electron. Corrections for 
relativistic effects in the reduced mass and the wave 
number were made in the present calculation. The value 
of a t can be readily computed with the following recur- 
rence formula and the value of ao can be accurately 
approximated over the entire range of fl as follows 
(Melkanoff, Sawada & Raynal,  1966): 

o t + , = t a n - ' [ f l / ( L  + 1)] + at,  (6) 

a o = - f l +  l n ( ~ +  1 6 ) + - t a n  -I 
2 

_ [ / f l -48  
fl 1 +  

12(/~ + 16) 30( f f  + 16) 2 

f14_ 160fl 2+ 1280 
+ (7) 

105(fl 2 + 16) 4 

The additional phase shift 6 L can be obtained from 
the solution for the radial equation 

[dE/dr 2 + k 2 -  U ( r ) -  L ( L  + 1)/rZ] ~,L(r) = 0 (8) 

with U(r) = (2m/hZ)V(r) ,  where V(r)  is the potential 
energy which asymptotically behaves as - Z ' e Z / r  at 
large r. Since at r = r m = 15%(% is the Bohr radius) 
the potential of the ion agrees with purely Coulombic 
potential to five significant figures in the present 
calculation, the asymptotic solution is matched to a 
linear combination of the regular and irregular 
Coulomb wave functions, FL(fl:k,r ) and GL(fl:k,r ), as 
follows (Melkanoff, Sawada & Raynal,  1966): 

q/t(fl:k,r) = FL(fl:k,r) + Ct[Gt( f l :k ,r )  + iFt(fl:k,r)] (9) 

for r ~_ r m. The value of c5 t can be obtained from C t 
through the equation 

1 
Ct = -~-[exp (2idiL)- 11. (10) 

Equation (8) was solved by Cowell's method 
modified by Melkanoff, Sawada & Raynal  (1966), 
where the mesh space used in the numerical integration 
is 0 .001%. The Coulomb wave functions F L and G L 
(L = 0,1) for r = r m were obtained using the asymptotic 
solution given by Fr6berg (1955), since the criteria for 
the solution, flz ,~ krm, L z ,~ krm, hold well. The 
calculation of wavefunctions with higher L for r = r m 
was carried out with an upwards recurrence relation. 

Using s = 2k sin (0/2), the scattering amplitude (1) is 
expressed as 

2kfl  
f ( s )  = 

s 2 
exp [--2ifl In (s /2k)  + in + 2io 0] 

1 oo 

+ 2i---k Z (2L + 1)exp (2ia/)[exp (2i6L)-- 1] 
L = O  

× Pt  {cos 12 sin -1 (s/2k)] }. (11) 

In the present work, the scattering amplitude was 
calculated as a function of s. The upper limits of the 
azimuthal quantum number L used in this partial wave 
calculation are listed in Table 1. In the table, the figures 
show the number taken for a satisfactory convergence, 
while those with asterisks give the maximum number 
available for the present computational facilities. The 
fluctuation in f ( s )  due to the poor convergence was 
successfully eliminated by a smoothing-out method. It 
is noted that the curvef(s) ,  obtained by smoothing-out, 
of Na ÷ for L = 100 at 40 keV agreed well with the 
smooth curve calculated with L = 160. 

Analytic forms of potential 

Since the exchange effect can be neglected in high- 
energy scattering (Mott & Massey, 1965), the potential 
energy V(r)  in (8) may be given by 

e 2 
V(r)  = - Z  h + e2f  p ( r ' ) / I r -  r' Idr', (12) 

r 

where Z is the atomic number;  p(r) is the electron 
density of the ionized atom, which can be obtained 
from the atomic wavefunction. Analytic potentials, 
V(r), for ionized atoms Li +, Na +, K +, F -  and C1- were 
calculated using nonrelativistic analytic Har t ree-Fock 
wavefunctions by Clementi (1965). Although 
relativistic Har t ree-Fock atomic fields for Br-, I-, Rb + 
and Cs + obtained by Coulthard ( 1 9 6 7 ) w e r e  given 
numerically, in the present paper analytic potentials, 
V(r), for these ionized atoms were calculated in the 

Table 1. The upper limits o f  the az imutha l  quantum 
number  L taken in the part ial  wave sum 

10 keV 40 keV 70 keV 100 keV 

Li ÷ 50 130 399* 399* 
Li 2÷ 50 210 399* 399* 
Na ÷ 120 160 200* 230* 
K ÷ 100 170 230 330 
Rb ÷ 100 190 240 330 
Cs ÷ 150 190 250 320 
F- 140 230 280* 330* 
CI- 140 230 280* 330* 
Br- 140 270 399* 399* 
I- 270 399* 399* 399* 

* Maximum number available for the computing facilities. 
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following indirect way, starting with the X-ray scatter- 
ing factor Fx(S). The values of Fx(S) were calculated by 
Doyle & Turner (1968) and are tabulated in Table 
2.2A of International Tables for  X-ray Crystal- 
lography (1974). 

The electron scattering factor, FB(s), is related to 
Fx(S ) in the first Born approximation by 

2 
Fs(s) = ~ [ Z -  Fx(s)l/s 2 

as 
oo 

2 f V(r) sin (sr) r2 dr. (13) 
a s e 2 d o sr 

Since singly ionized halogen atoms ( X - )  and alkali 
atoms (A +) are isoelectronic with a neutral rare-gas 
atom whose atomic number is Z __ l, the potential, V(r), 
for X -  and A + is approximated by 

e 2 e 2 
V ( r ) ~ v ( r ) = + - - - - - - ( Z  + 1) yi exp (--2~r), (14) 

r r i = 1  

according to Cox & Bonham (1967). In the first Born 
approximation (Cox & Bonham, 1967), the electron 
scattering factors,fB(s), were found to be 

2 2 m Yi 
f , ( s ) =  ¥ s 2 + - - ( Z  + 1) . (15) 

aB an 22 + s 2 . =  

However, it is found that the electron scattering factor, 
fs(s),  calculated by (15) differs from Fs(s) by a small 
amount;  Fs(s) = fs (s)  + Afs(s). This small difference 
arises from the difference between V(r) and v(r); Av(r) 
= V(r) - v(r). The small potential difference, Av(r), 
may be regarded as the sum of Gaussian functions: 

Av(r) - ~ .  exp - . (16) 
i 1 

The electron scattering factor Afs(s) due to Av(r) is 
calculated by 

AfB(s ) = ~. a i exp (--b z s2). (17) 
i = l  

Numerical values for Afn(s) = Fn(s) --fn(s) are used to 
determine a z and bz by a least-squares method. The 
values of a~ and b~ are listed together with ),i and 2~ 
(Cox & Bonham, 1967) in Table 2. 

Using the analytic potential V(r) = v(r) + Av(r) 
obtained above, electron scattering factors for Br-,  I - ,  
Rb + and Cs + were calculated by the partial wave 
method. In order to check the accuracy of the scat- 
tering factors, scattering factors for K + and C1- were 
calculated by the indirect method and were found to 
agree within 1% with the corresponding ones cal- 
culated using Clementi's (1965) analytic wavefunction. 
It is expected that scattering factors for Br-,  I - ,  Rb + 
and Cs + are accurate to a similar degree. 

For  Li 2+, the potential was derived from the ground- 
state wavefunction of the hydrogen-like atom. 

Numerical results and discussion 

Using the theory and the potentials obtained in the 
preceding sections, scattering factor I f l  and phase r /of  
ionized atoms, Li +, Li 2+, N a  +, K +, Rb +, Cs +, F - ,  CI-,  
Br-  and I- ,  were computed* by the partial wave 
method for impact electron energies 10, 40, 70 and 100 

* Tables of the results have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
34894 (l 1 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 

Table 2. The potential parameters )'t and 2 i (a.u.) 
determined by Cox & Bonham (1967) and parameters 

ai and b i (A,) obtained in the present study 

Br- 

Rb + 

Cs + 

y 2 

4.1201 7.2511 
-0.0553 85.3351 
11.8935 12.8260 
13.7167 36.0695 

-1.3169 2.6894 
-14.3716 11.2830 
-14.2991 35.2590 

1.3121 1.9907 

4.1201 7.2511 
-0.0553 85.3351 
11.8935 12.8260 
13-7167 36-0695 

-1.3169 2.6894 
-14.3716 11.2830 
-14.2991 35.2590 

1.3121 1.9907 

7.6397 13.6666 
-0.0299 137.4095 
21.5995 24.0007 
20.8424 48.7608 
-5.1302 7.8087 

-25.0317 21.1625 
-22.8271 47.4972 

1.5368 9.1558 
2.1983 4.9962 
0.2210 0.8904 

7.6397 13.6666 
-0.0299 137.4095 
21.5995 24.0007 
20.8424 48.7608 
-5.1352 7.8087 

-25.0317 21.1625 
-22.8271 47.4972 

1.5368 9.1558 
2.1983 4.9962 
0.2210 0.8904 

a b 

0.0026 0.0080 
0.0211 0.0746 
0.2179 0.2163 
1.8339 0.5415 
0.2139 1.2192 

--0.0112 0.3309 
-0-1006 0-1669 
--1.3976 0.4369 
-0-0074 0.1844 

0.0145 54-9604 
--0.1125 0-0855 
--0.3158 0.1896 
-2.0852 0.4789 
-5.5334 0.6872 
-1.3543 1.2156 

--0.0075 0.0212 
0.0071 0-0275 

--0.0062 0.0387 
--0.0182 0.0661 

0.0066 0.0816 
--0.0426 0.1403 
--0'0499 0.1946 
--0.9825 0-4244 

540-8258 0.5914 
--7372.5131 0-6573 
85065.750 0.7188 

--203928.42 0-7469 
154890.39 0.7721 

--41105.347 0.8404 
32767.088 0.9313 

--21236-090 0.9554 
5.6320 1.0336 

610.3093 1.1636 
-384.1653 1-2727 

143-0639 1.3297 
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keV over the range 1 < s < 60/~,-~ with an interval 
As = 1 A-~. To check the accuracy of the numerical 
results, the values of I f l  and r / o f  Na + and O-  for 
impact energy 40 keV were calculated and were found 
to agree with the corresponding values calculated by 
Peixoto (1969) within + 1.5%. 

The values of I f l  for the singly ionized atoms 
agree well with those for the neutral atoms tabulated in 
Table 2.5A of International Tables for X-ray Crystal- 
lography (1974) for s > 3/~-~, but deviate considerably 
from the values for neutral atoms for s < 3 /~-~. It is 
noted that a similar tendency has been observed for the 
values of I f l  calculated in the first Born approxi- 
mation (Doyle & Turner, 1968). For example, the 
scattering factors for Na + and Na and for CI- and C1 
are illustrated in Figs. 1 and 2, respectively. 

According to the present calculation, functions 
I f ( s ) l  for negatively ionized atoms F- ,  CI-, Br- and l -  
have a minimum value at s slightly less than 1 ]~-~, 
while those for positively ionized atoms have no 

g4 

(.9 
Z 

g3 

L2 
o< 

- -  Na lfl:4OkeV 

- - - -  Na" 

i 

O0 15 
s(X-') 

i i 

5 10 

Fig. 1. The scattering factors for Na and Na + at 40 keV. 

5 

Ct l#l:40keV 

CC 4 

Z 

~3 
I-.-- 

. .  

~ 2  

1 

0 
o 5 1o stX-'~.... 15 

Fig. 2. The scattering factors for CI and CI- at 40 keV. 

minimum. The minimum position is obtained at almost 
the same value of s as where the first Born scattering 
factor, FB(s ), vanishes (Doyle & Turner, 1968). The 
minimum values are not zero in our partial wave 
calculation; this is also the case for O-  as pointed out 
by Peixoto (1969). 

In the first Born approximation, the electron scatter- 
ing factor Fs(s) vanishes when Fx(S ) = Z, according to 
(13). In a modified Coulomb field, the amplitude is 
simply rewritten as 

f =  I l l  exp (iq) = I fcl exp (ir/c) + I fml exp (ir/m). (18) 

One obtains for the scattering factor, I f l ,  the following 
relation 

I f l  = { ( I f c l -  Ifml) 2 + 21fcllfml 

X [1 + COS (r/c-- r/m)]} 1/2 (19) 

As observed in the above calculation, the value of I f l  
does not vanish except for a special case where the 
following relations are simultaneously satisfied: 

r/, .- r/m = (2n + 1)zr (where n is an integer), (20) 

and 
If~l - Ifml = 0. (21) 

For example, according to our present calculation for 
Cl-  at 40 keV impact energy, the minimum value of 
I f l  is obtained at s = 0.785 ]~-], where r/c = 3.3367, 
r/m = 0.2790, Ifcl = 6.530 and Ifml = 6-615. It is 
noted that (20) with n = 0 and (21) do not exactly hold 
for these figures but are approximately satisfied. 

The present calculation also shows that the mini- 
mum value of I f l  decreases with increasing impact 
energy and the minimum position approaches the value 
of s where FB(s ) vanishes. For example, in the case of 
CI- the minimum values are 0.90372, 0.55739, 
0-46765 and 0.42911 /k and the minimum positions 
are 0.801, 0.785, 0.783 and 0.781 /~,-] for impact 
energy 10, 40, 70 and 100 keV, respectively, while the 
minimum position is 0-778 A -~ in the first Born 
approximation. 

Values of I f l  = I f  el for LP +, calculated directly 
through (2), are compared with those for Li, Li + and 
Li 2+ in Fig. 3. One notes that for s > 20 A, -~, the values 

r r  

o 
0.15 

Z 

~j 0.10 
I.-.- 

. .  

.~  o.o5 

I#  40 keY 

2'0 '0 ' 0 10 3 40 
s(~,-') 

Fig. 3. The scattering factors for Li, Li +, Li 2+ and Li 3+ at 40 keV. 
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of I f l  for Li 2+ and LP + are nearly equal to those for Li 
and Li +. Such a coincidence of l f l  for large s may  be 
interpreted by assuming that large-angle scattering is 
caused mostly by the nuclear  charge. 

Values of scattering phase r/for Li ÷, Li 2+ calculated 
by the partial  wave method and for Li 3+ calculated 
directly by (2) are plotted versus  s together with that 
for neutral Li in Fig. 4. The phase difference between a 
neutral Li atom and an ionized atom is almost  
independent  of s, except for s < 3, 8 and 11 A -~ for 
Li ÷, Li 2+ and Li 3+, respectively. 

For  alkali and halogen atoms, it has been noticed 
that  the phase difference, I r/z - r/~'l, between neutral 
(r/z) and ionized (r/+~) atoms is almost  constant  in the 
range s > 3 A -~ and that this difference is about 0 .19 
+ 0.01 rad for an impact  energy of 40 keV and is almost  
independent  of  the atomic number  Z, as plotted in Fig. 
5. I r/z -- r/+'l varies with the magnitude of  impact  
energy, being found to be about 0.32,  0.19,  0 .16 and 
0.15 rad for impact  energies of  10, 40, 70 and 100 keV, 
respectively. 

The fact that I r/z - r/ff ~1 is almost  independent  of  s 
and Z for the range s _> 3 A -~ implies that  the 
difference, r/~ - r/~z, between the scattering phase of an 
ionized atom (r/~ ~) and that of its nuclear charge (r/cz) 
has s and Z dependence similar to r/z - r/~z. 

- -  L i  

~ '  0.4 _ . - -  Li ÷ ~ 40 keY 
t.. ..~ _ . . _  Li2+ _ ~  

~ 0.2 . . . . .  L i 3 ~ " - ~ " " I ~ I - - - - -  ----~- 

~ ~  _____ .____ .____ .----- ------ ~ - -  

0 . - " . .  ~ . . . ~  . . . . _ . ~ . .  ~ . .  ~ - -  ~ -  

 .JLZ ........... 
- 0 . 2  . - ~  

/ /  . ~  

-o.4 / 

/' ib 2b 3b 
s (~,-') 

Fig. 4. The scattering phases for Li, Li +, Li z+ and LP + at 40 keV. 

hi 

~a2 

o ~ l l - ~ ] ;  :ALKALI  ATOM 

11-I1 :HALOOEN ATOM 

Li" N(a K* 

o & o  • 

40 KeY 

I I 
F- Cl- 

Rb* Cs* 
1 1 
o & o 

A 

l l 
- 

Br" I 

, , , 4' , 0 0 10 20 0 0 0 60 
Z: ATOMIC NUMBER 

Fig. 5. The constant difference in scattering phase between the ion 
and its neutral atom for alkali and halogen atoms at 40 keV. 

The implication is made on the following con- 
sideration. The phase difference I r/~ - r/~ll can be 
rewritten as 

I r /z -  r/ff'l = I(r /~-  r / c z ) - ( r i P ' -  r/¢=)l. (22) 

The quanti ty r/cz (s) is exactly given through (2) by 

r/cz(S) = - a z  In [sin2(0/2)] + 7r + 2%, (23) 

where 

% = - Z e  2 rn/h 2 k. 

The first term, r/~ - r/¢z, on the r ight-hand side of  (22) 
shows s and Z dependence as plotted for halogen, rare- 
gas and alkali a toms in Fig. 6. It is expected from (22) 
that when the quanti ty r/~ ~ - r/cz has s and Z depen- 
dence similar to r/z - r/cz shown in Fig. 6, It/z - r/~'l 
becomes independent  of s and Z. 

The analytic form of the scattering phase for a 
neutral atom was derived for the first t ime by Glauber  
& Schomaker  (1953). Using the second Born approxi- 
mat ion for a neutral atom with a potential energy 
- Z e  2 exp ( - r /a=) / r  (at  is a screening constant),  they 
expressed the phase r/z(S) as 

r/z (S) = - 2 t t  z 
1 + s  2 2 az 

s G ( 4  + s z a2)1/2 

and obtained 

sa z ] 
t anh-I  (4 + s z a~) 1/2 

(24) 

r/z(S ) = - 2 a  Z In (sa Z) for s >> 1/a Z. (25) 

The asymptot ic  phase difference r/= - r/c Z given by the 
subtract ion (25) - (23) is independent  of  s: 

r/z - r/cz = - 2 a z  In (2ka=) -z~ - 2 0 0  for s >> 1/a z. (26) 

The s and Z dependence of  r/= - r/c ~, as shown in Fig. 6, 
may  be qualitatively interpreted from (24), (25) and 
(26), derived with the second Born approximation.  

w 5 

tu 
re- 

,=, 4 u_ 

2 ] 

• 
.Rb 

--°Kr 

1 

i i i i 

0 10 20 30 40  
s (A") 

"Br 

I K  

. A r  

" C l  

, , N a  
oNe 
~F 

~Li 
,,He 

Fig. 6. The differences in scattering phase between the neutral atom 
and its nucleus at 40 keV plotted against s. 
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As a result, it could be inferred that the s and Z 
dependences of r/+1 - r/c Z are similar to the subtraction 
(24) - (23) and (26). An analytic form of 11 +l - r/c z will 
be highly desirable for the interpretation of the 
scattering phase for ionized atoms. 

The numerical computations were performed on a 
FACOM M-190 of the Kyoto University Computing 
Center and FACOM 230-60 of the Osaka City Univer- 
sity Computing Center. The authors would like to 
thank Dr Y. Kudo for his help, since this study was 
carried out by improving his original programs in 
nuclear research. They would also like to thank S. 
Kodera for his help in the numerical calculations and 
are grateful to Professor H. Watanabe for his en- 
couragement. 
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Abstract 

Transformation matrices required to obtain a conven- 
tional cell (Crystal Data cell) from the reduced cell 
have been applied to 47 000 crystalline compounds in 
the Crystal Data file. For 97% of the compounds, the 
calculations from the reduced cells yield conventional 
cells (lattice parameters, lattice type, and crystal 
system) that are entirely consistent with those reported 
in the original literature. In a few instances in which the 
reduced-cell matrix indicated a higher symmetry, the 
author has often noted that the crystal was unusual in 
some way or there was an error in the reported 
symmetry. Some implications of the results of this 
survey are: (1) metric symmetry as determined from 
the reduced cell is usually identical to the crystal-lattice 
symmetry; (2) determination of precise cell parameters 
defining any primitive cell of the lattice is valuable 
because from them one can conveniently determine the 
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crystal system with a high degree of confidence (the 
results, however, should still be verified by checking 
equivalent intensities and systematic extinctions); (3) if 
the metric symmetry obtained from the reduced cell 
and the symmetry determined by other techniques do 
not agree, the reason should be sought as there are 
often important structural implications; (4) the 
sequence of steps in an automatic procedure for the 
determination of space groups could be: primitive cell, 
reduced cell, lattice metric symmetry, crystal-lattice 
symmetry, extinction conditions. 

Introduction 

Research on crystallographic data bases should lead to 
the discovery of new relationships, to new classification 
schemes and to better data evaluation. Such data bases 
will become increasingly important in scientific 
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